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Equilibrium real gas computations using Marquina’s scheme
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SUMMARY

Marquina’s approximate Riemann solver for the compressible Euler equations for gas dynamics is gen-
eralized to an arbitrary equilibrium equation of state. Applications of this solver to some test problems
in one and two space dimensions show the desired accuracy and robustness. Copyright ? 2003 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Most modern shock capturing methods for compressible �ow simulations are based on
upwind di�erencing, and can be categorized into two general approaches: �ux-di�erence split-
ting (FDS) and �ux-vector splitting (FVS). The FDS uses either exact or approximate so-
lutions of the local Riemann problem between adjacent states to get a set of waves and
speeds, after �eld-by-�eld decomposition, and upwinding to distinguish between the in�u-
ence of the moving waves across the cell interface for time marching. The FVS ignores
the interaction between moving waves, and splits the �ux vector of mass, momentum
and energy into a left-going portion and a right-going portion to introduce an upwind
bias.
While both the FVS and the FDS have proven robustness and accuracy for a wide range

of problems, there are special situations where computational di�culties can arise in solving
the Euler equations, such as the overheating phenomenon in wall-shock re�ection problems
(see References [1, 2]), the carbuncle phenomenon and others (see Reference [3]).
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Donat and Marquina [2] introduced a new upwind-biased FVS method for approximating
solutions of hyperbolic systems of conservation laws. The basic scheme, a hybridization of
the Steger-warming FVS (SW-FVS) and the local Lax-Friedrichs (LLF) for the ideal gas,
corrects the lack of dissipation of the SW-FVS by introducing the more di�usive LLF in
the neighbourhood of the sonic points. This produces numerical approximations in which the
non-physical pathologies mentioned in Reference [3] are considerably reduced.
All of these approaches use the characteristic structure of the �ux Jacobian matrix, and

the algebraic simplicity of the polytropic ideal gas equation of state. However, the current
interest in high-temperature gas, for which air cannot be considered thermally and calorically
a perfect gas, has lead to various extensions of the FVS and FDS schemes to real gases, i.e.
a gas in which intermolecular forces are taken into account. Various extensions of either FVS
or FDS are considered in References [4–9] and we refer the interested reader to these papers
for speci�c details.
The aim of this work is to analyse Marquina’s FVS scheme for the Euler equations of

compressible �ow in equilibrium real gases. The behaviour of single-phase Navier–Stokes
gases is determined by the so-called fundamental derivative, given by

�=
1
�
@(�c)
@�

∣∣∣∣
s=constant

(1)

where s is the entropy, � is the density, and c=(@p=@�)|1=2s is the sound speed (p stands
for pressure). We shall only consider real gases with �¿0, including some special van der
Waals gases. When �¿0 for all � and s, all shocks are compression shocks, i.e. the pressure
and density of the gas increases across the shock wave.
This work is organized as follows: in Section 2, we review the equations of �ow for a

general convex equation of state and the corresponding Jacobian �ux matrix and its eigensys-
tems, which form the ingredients needed in our code. Marquina’s approach is brie�y reviewed
in Section 3. In Section 4 we give a constant entropy isobaric �x for both Sti�ened and
van der Waals equations of state. In Section 5 we display numerical results on test prob-
lems for shock re�ection and shock tube problems in 1-D, and the problem of Mach 3
�ow in a tunnel with a step in 2-D cartesian co-ordinates, for real gases governed by the
above-mentioned equations of state. These tests validate Marquina’s �ux split formula for
real gases and con�rm that, as in the ideal gas case, this �ux formula leads to a fairly robust
and accurate numerical scheme in which certain pathological behaviour known to occur in
numerical simulations with Godunov-type scheme is reduced to computationally acceptable
levels.

2. THE FLOW EQUATIONS

2.1. 1-D Euler equations

The one-dimensional compressible Euler equations written conservation form

@q
@t
+
@f
@x
=0 (2)
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where q is the state vector of the conserved quantities and f is the �ux function, are given
by

q=



�
m
E


; f(q)=




m

�u2 + p
u(E + p)


 (3)

E=�e+
�u2

2
(4)

where � is the density, m=�u is the momentum, E is the total energy per unit volume,
u is the velocity, e is the internal energy per unit mass and p is the pressure related to
these quantities via an equation of state (EOS), which is a relationship that describes the
equilibrium thermodynamic properties of the �uid material, and it is assumed to be written as

p=p(�; e)=p(�; e) (5)

where �=�−1 is the speci�c volume. We will assume that

p�¡0 and pe¿0 (6)

These conditions guarantee the hyperbolicity of system (3), (see Reference [5] and references
therein).
For a polytropic ideal gas, Equation (5) is given by

p=(�− 1)
(
E − �u2

2

)
; �¿1 (7)

The ratio of heats � takes the value 5
3 for a mono-atomic gas and the value 1.4 for air.

In this section, we give simple analytical expressions for the spectral decomposition of the
�ux Jacobian matrix

A(q)=




0 1 0

c2 − u2 − pe
�
(H − u2) 2u− upe

�
pe
�

u(c2 −H)− upe
�
(H − u2) H − u2pe

�
u+

upe
�




(8)

where c2 is the sound speed

c2 =
ppe
�2

+ p� (9)

H is the enthalpy

H =
E + p
�

=
p
�
+ e+

1
2
u2 (10)

and

p�=
@p
@�
(�; e); pe=

@p
@e
(�; e) (11)
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The eigenvalues of the Jacobian matrix are

�1(q)= u− c; �2(q)= u; �3(q)= u+ c (12)

The corresponding right eigenvectors are given by

r1(q)=




1
u− c
H − uc


; r2(q)=




1
u

H − �c2

pe


; r3(q)=




1
u+ c
H + uc


 (13)

The left eigenvectors {lk(q)}3k=1 are bi-orthonormal to {rk(q)}3k=1, i.e.

li(q) · rj(q)= �ij (14)

where �ij is the Kronecker symbol. To compute lk(q) we �rst form the matrix of right
eigenvectors

R(q)= (r1(q); r2(q); r3(q)) (15)

Using (14), we get the matrix of left eigenvectors

L(q)=R−1(q) (16)

The row vector lk(q), is de�ned to be the kth row in L(q). Then a complete set of left
eigenvectors is

l1(q) =
1
2

(
u
c
+ 1− Y − uX − 1

c
X
)

(17)

l2(q) = 1
2(Y uX − X ) (18)

l3(q) =
1
2

(
1− u

c
− Y − uX + 1

c
X
)

(19)

where

X =
pe
�c2

(20)

Y = (H − u2)X (21)

When the pressure is given by

p=(�− 1)�e (22)

one obtains expressions for the ideal gas case.
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2.2. 2-D Euler equations

The two-dimensional compressible Euler equations are

@q
@t
+
@f
@x
+
@g
@y
=0 (23)

where

q =



�
�u
�v
E


; f(q)=




�u

�u2 + p
�uv

(E + p)u


; g(q)=




�v
�uv

�v2 + p
(E + p)v


 (24)

E = �e+
�(u2 + v2)

2
(25)

where u and v are the velocities in the x- and y-directions, respectively, and p=p(�; e).
As in the 1-D Euler equations, we give analytical expressions for the spectral decomposition

of the Jacobian matrices A(q)= @f=@q and B(q)= @g=@q in terms of the thermodynamic
derivatives obtained from the (EOS).
The Jacobian matrix of the �ux f(q) is

A(q)=




0 1 0 0

c2 − X 2 − pe
�
(H − q2) 2X − Xpe

�
−Ype
�

pe
�

−uv Y X 0

X (c2 −H)− Xpe
�
(H − q2) H − X 2pe

�
−uvpe

�
X +

Xpe
�




(26)

The eigenvalues are

�1(q)=X − c; �2(q)= �3(q)=X; �4(q)=X + c (27)

A complete set of right eigenvectors is

r1(q) =




1
X − c
Y

H − Xc


; r2(q)=



0
0
1
Y


 (28)

r3(q) =




1
X
Y

H − �c2

pe



; r4(q)=




1
X + c
Y

H + Xc


 (29)
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The corresponding right and left eigenvectors are

l1(q) =
(
b2
2
+
X
2c

− b1X
2

− 1
2c

− b1Y
2
b1
2

)
(30)

l2(q) = (−Y 0 1 0) (31)

l3(q) = (1− b2 b1X b1Y − b1) (32)

l4(q) =
(
b2
2

− X
2c

− b1X
2
+
1
2

− b1Y
2
b1
2

)
(33)

where

q2 = u2 + v2; c2 =p� +
ppe
�2

(34)

H =
E + p
�

; X = u; Y = v (35)

b1 =
pe
�c2

; b2 = 1 + (q2 −H)b1 (36)

The Jacobian matrix of the �ux function g(q) and its eigensystem are obtained from those
of f(q) by interchanging the second and third rows, and columns, and setting X = v and Y = u.

2.3. Equations of state

We consider here two equations of state which we will use in the numerical computations,
written in the general form

p=p(�; e) (37)

Sti�ened gas EOS: The Sti�ened gas EOS is a reasonable approximation for gases, liquids,
and solids under high-pressure conditions. Such equation is obtained by linearization near a
reference state from a Gruneisen equation of state for metal [10]

p=(�− 1)�e+ C
(
�
�ref

− 1
)

(38)

where �ref is a reference density, and C is a constant depending on the gas. The thermody-
namic derivatives used in our scheme are

p�=(�− 1)e+ C
�ref

and pe=(�− 1)e (39)

van der Waals EOS: This is an equation of state that takes into account the e�ects of
attractive forces between the molecules [11], and it has the form

p(�; T )=
RT
�− b − a

�2
(40)

where T is the temperature, and the quantities a and b are the van der Waals gas con-
stants that measure the molecule cohesive forces and the �nite size of molecules, respectively
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(a¿0; 06b¡1=�, see Reference [11] for numerical values to various gaseous substances).
Since e= e(�; T ) and

de=
(
p− TpT
�2

)
d�+ cv dT (41)

Equation (40) may be written as

p(�; e)=
�R

1− �b
(
e+ a�
cv

)
− a�2 (42)

with

p�=
R
cv

(
e+ a�
(1− �b)2 +

�a
1− �b

)
− 2a� and pe=

�R
cv(1− �b) (43)

Here R is the speci�c gas constant, and cv the speci�c heat at constant volume.
Note that a van der Waals gas (42) reduces to a Noble-Abel gas when a=0. Polytropic

gases are obtained for b=0 as well.

3. MARQUINA’S METHOD FOR REAL GASES

Marquina’s �ux function, introduced by Donat and Marquina [2], is an extension of the
upwind entropy �x of Shu and Osher [12] to systems of hyperbolic conservation laws within
each cell. The Jacobian matrix A(q) at q is decomposed into its eigenvalues {�p(q)}mp=1,
normalized right eigenvectors {rp(q)}mp=1 and normalized left eigenvectors {lp(q)}mp=1. These
ingredients allow the application of Marquina’s approach to the Euler equations for real gases
in the one-dimensional case. Next, we brie�y review the method and comment on speci�c
issues related to the EOS for non-perfect gases.
Consider a cell wall, xi+1=2, where we have to evaluate the numerical �ux function Fni+1=2,

at a given time step n. We decompose the left state Qi, the right state Qi+1, and the �ux
function evaluated at these states into characteristic variables

!pi = l
p(Qi):Qi ; !pi+1 = l

p(Qi+1):Qi+1

�pi = l
p(Qi):f(Qi); �pi+1 = l

p(Qi+1):f(Qi+1)

for p=1; : : : ; m. The characteristic numerical �uxes are

�k+ = �
k
i �

+
k �

+
k − 1

2 (�
k
i + �k!

k
i )�

−
k

�k− = −�ki+1�+k �−k − 1
2 (�

k
i+1 − �k!ki+1)�−k

where

�k = sign(�k(Qi)) sign(�k(Qi+1))

�k = sign(�k(Qi))
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and

�k = max
q∈�i(Q i ;Q i+1)

|�k(q)|

Here �i(Qi ;Qi+1) is a curve in phase-space connecting Qi and Qi+1. For the Euler equations
of gas dynamics, the pth characteristic �elds are genuinely non-linear or linearly degenerate
(also in our real gas case since �¿0). In that case

�k = max(|�k(Qi)|; |�k(Qi+1)|)
Marquina’s �ux function is then

FM(Qi ;Qi+1)=F+ + F− (44)

where

F+ =
m∑
p=1
�p+r

p(Qi); F−=
m∑
p=1
�p−r

p(Qi+1) (45)

Marquina’s scheme is consistent, i.e.

FM(q; q)= f(q) (46)

If all signal speeds �p(Qi) and �p(Qi+1) are positive, then

FM(Qi ;Qi+1)= f(Qi) (47)

and when all signal speeds are negative

FM(Qi ;Qi+1)= f(Qi+1) (48)

When an eigenvalue changes sign, Marquina’s �ux function characteristic component is con-
structed from the local-Lax-Friedrichs scalar numerical �ux, which introduces additional dis-
sipation to enforce an entropy condition in the case of a rarefaction wave (when �p(Qi)¡0¡
�p(Qi+1)), or in other circumstances such as shock re�ection (see References [2, 13]). The
�ux splitting and the Jacobian evaluation in the �rst-order scheme are based on the physical
data on the left and right sides of the cell wall.
Marquina’s scheme is thus a characteristic-based upwind scheme that, in contrast to the

other upwind schemes, is free from either exact or approximate Riemann solvers in the case
of non-linear systems.
The �rst-order scheme based on Marquina’s �ux function has conservation form

Qn+1
i =Qn

i −
�t
�x
(Fni+1=2 − Fni−1=2)

with

Fni+1=2 =F
M(Qi ;Qi+1)

Higher accuracy can be achieved by evaluating the Jacobian matrices A(qL) and A(qR)
at the left-side-biased interpolation of the conservative state Qi and the right-side-biased in-
terpolation of the conservative state Qi+1, respectively. Then, we use the eigenstructure of
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the Jacobian matrices A(qL) and A(qR) separately to compute the numerical characteristic
�uxes, by applying a non-linear high-order interpolation procedure on both the characteristic
variables and characteristic �uxes �p and !p in space, leaving the problem continuous in
time, and using the total variation diminishing Shu–Osher Runge–Kutta methods for the time
evolution.
The states qL and qR on both sides of cell wall are interpolated using the same procedure as

for the numerical characteristic �uxes. In our numerical experiments, the reconstruction step
is performed on the conservative variables using the second-order ENO [12] and the third-
order PHM [14] procedures together with the second- and third-order Runge–Kutta methods,
respectively.
For multidimensional systems, we extend Marquina’s scheme by the standard dimension by

dimension technique, so that the 1-D algorithm applies in each spatial dimension.

Remark 1
For a polytropic ideal gas or a thermally (not necessarily calorically) perfect gas with EOS

p=�RT (e)

we have
p(��; e)= �p(�; e)

Then, the physical �ux is homogenous of degree 1, and Marquina’s scheme is a non-linear
hybridization of Steger and Warming FVS and LLF in each characteristic �eld. For an arbitrary
equilibrium gas, the physical �ux no longer possesses the homogeneity property and we cannot
�nd a natural real-gas extension of Steger and Warming FVS, see Reference [9].

Remark 2
We note that for general EOS, the construction of some Riemann solvers is not unique and
it is somewhat di�cult [6, 9]. For example, for Roe FDS, a Roe matrix is not uniquely
determined and numerical codes using such matrix need mean values of the thermodynamical
derivatives p� and pe. Such quantities cannot be evaluated by their exact derivatives at mean
values �� and �e without violating the condition

�p= �pe�e+ �p���

(see References [4, 6, 7, 9] for details). In Marquina’s �ux formula we use directly the point
values of such derivatives, which may be computed easily from the EOS without using addi-
tional assumptions or approximations.

4. CONSTANT ENTROPY ISOBARIC FIX FOR STIFFENED
AND VAN DER WAALS EOS

The constant entropy isobaric �x, recently derived by Fedkiw et al. [15], is a new method to
�x the overheating errors which may occur when a shock re�ects o� a stationary solid wall
boundary or near a material interface. The isobaric �x is applied as a boundary condition near
the wall or interface by �xing pressure and velocity and enforcing constant entropy to get a
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new density or temperature so that the total variation from the physical values is minimum
(see Reference [15] for more details).
Fedkiw et al. [15] have written such entropy correction for ideal gases, tait solid, and virial

EOS, and have pointed out the di�culty to apply it to other EOS. In this section, we give a
constant entropy isobaric �x for both sti�ened and van der Waals EOS.
Let us denote by ‘a’ the reference cell and by ‘b’ the cells to be corrected. The equation

that guarantees constant entropy [15] is

de
d�
=
p
�2

(49)

We solve the initial value problem de�ned by this equation together with �=�a to get the
corrected density �b for the Sti�ened gas EOS and the van der Waals EOS cases.

4.1. Sti�ened EOS

Using the equation of state, Equation (49) can be rewritten as an initial value problem with
a linear �rst-order ordinary di�erential equation

de
d�
=
f(�)
�2

+
g(�)
�2

e (50)

where

f(�)= (�− 1)�e and g(�)=C
(
1− �

�ref

)
(51)

We use the integrating factor 	=�1−�, and we get the following solution:

e= − C
��

− C
(�− 1)�ref + C(S)�

�−1 (52)

where C(S) is a constant depending on the entropy S. We use the EOS to get

C(S)=
p− C
(�− 1)�� (53)

or, equivalently

C ′(S)=
p− C
��

(54)

Thus, the new density is

�new =�a

(
pb − C
pa − C

)1=�
(55)

4.2. van der Waals EOS

Using the equation of state, Equation (49) becomes

de
d�
=

R
cv(1− �b)� e+

aR
cv(1− �b) − a (56)
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integrating this ODE, we get the solution

e=C(S)
(

�
1− �b

)R=cv
− a� (57)

We apply the EOS to obtain

C(S)=
cv
R
(p+ a�2)

(
�

1− �b
)−R=cv−1

(58)

One can use the Newton–Raphson iteration

xn+1 = xn − h(xn)
h′(xn)

(59)

x0 = �a (60)

where

h(x)=
cv
R

(
x

1− xb
)R=cv+1

− ax 2 − pb (61)

to approximate the new density �new.

5. NUMERICAL EXPERIMENTS

We will use the �rst-, second-, and third-order TVD Runge–Kutta methods for time stepping,
and the second-order ENO and the third-order PHM method for the spatial discretization. For
the Sti�ened gas EOS we consider �=1:4, and C=1. For the van der Waals EOS we use
�=1:39; R=0:0821dm3 atmK−1 mol−1; a=0:03412dm6 atmmol−2; b=0:23dm3 mol−1, and
cv=20:81 J K−1 mol−1.

5.1. Shock-tube problem

The �rst test to validate the accuracy and robustness of the present �ux split method is the
shock tube problem. The initial data consists of two constants states separated by a diaphragm
at x=0:5. The left and the right states are given by

(�L; uL; pL) = (1; 0; 1) (62)

(�R ; uR ; pR) = (0:125; 0; 0:1) (63)

The solution contains four states separated by a shock wave, a contact surface, and an
expansion wave. The numerical results, represented by circles, together with the exact so-
lution represented by solid lines, are shown in Figures 1–4. One can see that the three
waves are well resolved and that the present solver equipped with the ENO-2 and PHM-3
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Figure 1. Sti�ened EOS. Shock tube problem with ENO-2 scheme: density top, pressure left, at t=0:06
left, t=0:09 right. All the variables were computed on a equidistant grid of 100 zones.

reconstruction procedures converges to the entropy solution with good resolution. The numer-
ical approximations agree well with the exact solution for both Sti�ened and van der Waals
EOS. Also, there are no noticeable pathologies or unwanted oscillations associated with any
of them.
In the �rst two �gures, which correspond to Sti�ened EOS, the jump across the contact

discontinuity is large if we compare it with the ideal gas case, but the numerical dissipation
remains the same (usually 4 or 5 points in the surface position). A weaker shock wave is
also observed. The scheme gives the correct shock position with a monotone pro�le and good
resolution.
For van der Waals EOS, Figures 3 and 4, it appears that the scheme behaves as in the

ideal gas case.
The results show that the third-order hyperbolic extension of the present scheme performs

well and gives the best resolution.
In Figure 5 we have plotted the density obtained by the same procedures with the extension

of van Leer �ux vector splitting scheme [9] instead of the present solver. As we can see the
results are nearly the same for both Sti�ened and van der Waals EOS.
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Figure 2. Sti�ened EOS. Shock tube problem with PHM scheme: density top, pressure left, at t=0:06
left, t=0:09 right. All the variables were computed on a equidistant grid of 100 zones.

5.2. Shock-re�ection problem

In this example we consider the problem of a strong shock re�ection from a rigid wall in
one dimension for real gases. The initial conditions consist of a gas of constant density and
pressure moving towards x=0 in the computational domain [0; 1], i.e.

(p(x); u(x); e(x))= (1;−1; 4); 0¡x¡1 (64)

The boundary at x=0 is a solid wall.
The ‘overheating e�ect’ occurs in the �rst few zones near the wall, when the shock re�ects

o� the stationary solid wall at the boundary. The overheating in the speci�c internal energy
pro�le (peak) and the corresponding dip in the density are conspicuous, while the pressure
and velocity have correct values.
Following Noh [1], this error is inevitable for any shock capturing method unsuccessful to

model the heat conduction present in real �uids. He showed that a numerical scheme with a
builtin heat conduction mechanism will be able to dissipate the overheating, i.e. the solution
converges in the L∞ sense.
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Figure 3. van der Waals EOS. Shock tube problem with ENO-2 scheme: density top, pressure left, at
t=0:06 left, t=0:09 right. All the variables were computed on a equidistant grid of 100 zones.

Glaister [6, 7] has also observed the overheating error for other equations of state.
Figures 6 and 13 display numerical approximations obtained by the �rst-order scheme for

both Sti�ened and van der Waals EOS. Although we observe an overheating in density (whose
value is around 1.5%) and the consequent dip in internal energy (of value less than 2%), this
behaviour is by no means as extreme as the one observed in other real-gas experiments, e.g.
Reference [6]. These plots show that the present �ux-split method dissipates the overheating
error to a numerically acceptable level also in the real-gas case.
The overheating error for real gases persists in time, but its magnitude decreases with time.

The di�erence of the relative errors for Sti�ened EOS. is less than 0.000341, and less than
0.000185 for van der Waals EOS, between t=1:5 and 2, with �t=�x=0:1 and 100 equally
spaced points.
Our numerical experiments shown that the present scheme produces many intermediate

states in the numerical shock layer. This is due to the fact that in such a region, near the re-
�ecting boundary, the wavespeeds change sign, thus, our �ux-split method adds dissipation. To
reduce such dissipation, and to improve the overall resolution, we have experimented with a
second and a third-order extension of the present scheme by ENO2 and PHM3 reconstructions,
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Figure 4. van der Waals EOS. Shock tube problem with PHM scheme: density top, pressure left, at
t=0:06 left, t=0:09 right. All the variables were computed on a equidistant grid of 100 zones.

respectively. In Figures 7, 8,14 and 15, we display the density and internal energy (Figures
9–11). The results are consistent with those of the �rst-order scheme, in that we see an
ordering of schemes (see also the closer look at the wall in the right side of Figures 12 and
19) �rst order, ENO-2, and PHM, in order of decreasing magnitude of error. Notice that the
local hyperbolic reconstruction gives the best approximation near the wall and in the shock
transition layer (Figures 13–19). For the sake of comparison, the left sides of Figures 12
and 19 show the numerical value obtained with van Leer scheme near the wall. The overheat-
ing is much visible in the �rst- and the third-order schemes near the wall. The second-order
scheme gives similar results for Sti�ened EOS as those obtained of our ENO2 method. No-
tice that the present solver combined with the local hyperbolic reconstruction gives the best
approximation near the wall and in the shock transition layer.

5.3. A two-dimensional test

In this section, we consider the standard two-dimensional Mach 3 step �ow test problem. This
test has been used by Colella and Woodward [16] to compare the performance of various
numerical schemes in ideal gas simulations.
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Figure 5. Shock tube problem with van Leer scheme, density, left: second-order scheme, right:
third-order scheme right, top: Sti�ened EOS top, and bottom: van der Waals EOS bottom.

Figure 6. Sti�ened EOS. Shock re�ection problem with �rst-order scheme for time t=0:3: density left,
internal energy right. All the variables were computed on a equidistant grid of 100 zones.
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Figure 7. Sti�ened EOS. Shock re�ection problem with ENO-2 scheme for time t=0:3: density left,
internal energy right. All the variables were computed on a equidistant grid of 100 zones.

Figure 8. Sti�ened EOS. Shock re�ection problem with PHM scheme for time t=0:3: density left,
internal energy right. All the variables were computed on a equidistant grid of 100 zones.

Figure 9. Sti�ened EOS. Shock re�ection problem with �rst-order scheme for time t=0:3: density left,
internal energy right. All the variables were computed on a equidistant grid of 400 zones.
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Figure 10. Sti�ened EOS. Shock re�ection problem with ENO-2 scheme for time t=0:3: density left,
internal energy right. All the variables were computed on a equidistant grid of 400 zones.

Figure 11. Sti�ened EOS. Shock re�ection problem with PHM scheme for time t=0:3: density left,
internal energy right. All the variables were computed on a equidistant grid of 400 zones.

Figure 12. Sti�ened EOS, a zoom of 30 grid zone next to the left wall on a 100 zones. Right: present
scheme, left: van Leer scheme. o: �rst-order, +: ENO-2, and *: PHM.
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Figure 13. van der Waals EOS. Shock re�ection problem with �rst-order scheme
for time t=0:4: density left, internal energy right. All the variables were

computed on a equidistant grid of 100 zones.

Figure 14. van der Waals EOS. Shock re�ection problem with ENO-2 scheme for time t=0:4: density
left, internal energy right. All the variables were computed on a equidistant grid of 100 zones.

Figure 15. van der Waals EOS. Shock re�ection problem with PHM scheme for time t=0:4: density
left, internal energy right. All the variables were computed on a equidistant grid of 100 zones.
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Figure 16. van der Waals EOS. Shock re�ection problem with �rst-order scheme
for time t=0:4: density left, internal energy right. All the variables were

computed on a equidistant grid of 400 zones.

Figure 17. van der Waals EOS. Shock re�ection problem with ENO-2 scheme for time t=0:4: density
left, internal energy right. All the variables were computed on a equidistant grid of 400 zones.

Figure 18. van der Waals EOS. Shock re�ection problem with PHM scheme for time t=0:4: density
left, internal energy right. All the variables were computed on a equidistant grid of 400 zones.
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Figure 19. van der Waals EOS, a zoom of 30 grid zone next to the left wall on a 100 zones. Right:
present scheme, left: van Leer scheme, o: �rst-order, +: ENO-2, and *: PHM.

Figure 20. Sti�ened gas EOS, contour plots of numerical approximations to the density by the �rst
order scheme: no corner correction (top), with corner correction (bottom) at T =2.

The problem begins with a uniform Mach 3 �ow in a wind tunnel containing a step. The
tunnel is 3 units long and 1 unit wide. The step is 0.2 units high and is located 0.6 units
from the left hand and of the tunnel. An in�ow boundary condition is applied at the left end
of the computational domain and out�ow boundary conditions are applied at the right end.
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Figure 21. Sti�ened gas EOS, contour plots of numerical approximations to
the density by ENO-2-REF-M (top), PHM-REF-M (bottom) at T =2. The

corner treatment is applied.

We apply re�ecting boundary conditions along the walls of the tunnel. The initial conditions
for the gas in the tunnel are �=1:4; p=1; u=3, and v=0.
The density pro�le is the hardest to compute due to the numerical errors generated at the

corner of the step, which is the centre of the rarefaction fan, i.e. a singular point of the �ow,
along the upper wall at the contact discontinuity, and along the re�ecting boundaries.
Colella and Woodward [16], and Fedkiw et al. [15], noticed that these errors generated in

the neighbourhood of the corner and along the re�ecting boundaries can a�ect seriously the
global �ow. A large entropy near the singular point causes a boundary layer in density of about
one to two zones to form, and the magnitude of the two components of the velocity decreases
along the top of the step. To �x it, it is necessary to apply additional boundary corrections
near the corner to minimize the numerical errors: a constant-entropy �x (see Section 4), to
enforce entropy constancy, and an enthalpy correction, to get the solution to converge to the
steady state.
The corner treatment is performed after updating the computed solution by a substep of the

TVD Runge–Kutta methods as follows.
Let us denote by ‘a’ the cell located just to the left and below the corner, called the

reference cell, and by ‘b’ fours cells of the �rst row above the step starting just to the right
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Figure 22. van der Waals EOS, contour plots of numerical approximations to the density by the
�rst-order scheme: no corner correction (top), with corner correction (bottom) at T =2.

of the corner, and the �rst two cells of the second row above, also starting from the right.
We use the conserved variables qa to correct the variables qb.

• Entropy correction: In each cell ‘b’ we reset the new density computed in Section 4
from cell ‘a’ for both Sti�ened and van der Waals EOS. Those corrections are consistent
since the EOS used have �¿0.

• Enthalpy correction: We use the new density value to correct the enthalpy in ‘b’ cells,
by changing the magnitudes of the velocities (not their directions!) as follows:
There is always a non-negative constant � such that

Ha=H�
b (65)

where Ha is the enthalpy in cell ‘a’, and

H�
b =

pb
�a
+ eb +

1
2
�q 2b (66)

with q 2b =y
2
b + v

2
b . Equation (65) is just Bernoulli’s law for steady �ows [17], and

it always has a non-negative solution for �, because the value of �b is never larger
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Figure 23. van der Waals EOS, contour plots of numerical approximations to the density:
ENO-2-REF-M (top), PHM-REF-M (bottom) at T =3. The corner treatment is applied.

than �a

�=
2(Ha − pb=�b − eb)

q 2b
(67)

The new conserved variables are

qb=(�new;
√
��newub;

√
��newvb; �neweb + �new�(u2a + v

2
a =2))

T (68)

Such corner correction is accompanied by an entropy correction along the upper wall of
the tunnel to reduce overheating errors.
We run the code, with equally spaced grids �x=�y= 1

40 , and display the numerical
results when the unsteady �ow has a rich and interesting structure. Each plot (Figures 20–
23) displays 30 equally spaced level curves between the minimum and maximum values of
the computed density.
Figures 24–26 show the e�ect of the numerical corner treatment and isobaric �x. The

overheating errors are reduced (the level curves near the wall are more orthogonal). Observe
that the Mach stem pathology at the contact discontinuity is minimized and the entropy at
the corner is preserved. Also, we see that the Mach stem and the position of the re�ected
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Figure 24. Sti�ened EOS, contour plots of numerical approximations to the enthalpy by the PHM
scheme: no corner correction (top), with corner correction (bottom) at T =3. Notice the entropy

violation near the corner and the build up of the boundary layer.

Figure 25. van der Waals EOS, contour plots of numerical approximations to the enthalpy by the
PHM scheme: no corner correction (top), with corner correction (bottom) at T =3. Notice the entropy

violation near the corner and the build up of the boundary layer.
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Figure 26. Section x=0:605 of the enthalpy. Top: Sti�ened EOS. Bottom: van der Waals EOS. Left:
no corner treatment. Right: with corner treatment.

shock are consistent in all runs. The order of accuracy of the method used is consistent with
resolution obtained.

6. CONCLUSION

An extension of the �ux split method [2] to an arbitrary equilibrium gas law has been de-
scribed. The scheme is non-linear, uniquely de�ned, upwind, and introduces numerical dissi-
pation in a natural way. The evaluation of the �ux function uses directly the point values of
the thermodynamical derivatives without any assumption or approximation.
An extension of Bernoulli’s law, to get the solution to converge to steady state, and an

entropy correction for both Sti�ened gas and van der Waals EOS, to reduce the overheating
near material interfaces, has also been introduced.
From the numerical results, it is clear that the present scheme is as robust and e�cient as

in the perfect gas case.
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