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Equilibrium real gas computations using Marquina’s scheme

Youssef Stiribaf, Antonio Marquina®* and Rosa Donat?

Departament de Matematica Aplicada, 46100-Burjassot, Universitat de Valéncia, Valéncia, Spain

SUMMARY

Marquina’s approximate Riemann solver for the compressible Euler equations for gas dynamics is gen-
eralized to an arbitrary equilibrium equation of state. Applications of this solver to some test problems
in one and two space dimensions show the desired accuracy and robustness. Copyright © 2003 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Most modern shock capturing methods for compressible flow simulations are based on
upwind differencing, and can be categorized into two general approaches: flux-difference split-
ting (FDS) and flux-vector splitting (FVS). The FDS uses either exact or approximate so-
lutions of the local Riemann problem between adjacent states to get a set of waves and
speeds, after field-by-field decomposition, and upwinding to distinguish between the influ-
ence of the moving waves across the cell interface for time marching. The FVS ignores
the interaction between moving waves, and splits the flux vector of mass, momentum
and energy into a left-going portion and a right-going portion to introduce an upwind
bias.

While both the FVS and the FDS have proven robustness and accuracy for a wide range
of problems, there are special situations where computational difficulties can arise in solving
the Euler equations, such as the overheating phenomenon in wall-shock reflection problems
(see References [1, 2]), the carbuncle phenomenon and others (see Reference [3]).
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276 Y. STIRIBA, A. MARQUINA AND R. DONAT

Donat and Marquina [2] introduced a new upwind-biased FVS method for approximating
solutions of hyperbolic systems of conservation laws. The basic scheme, a hybridization of
the Steger-warming FVS (SW-FVS) and the local Lax-Friedrichs (LLF) for the ideal gas,
corrects the lack of dissipation of the SW-FVS by introducing the more diffusive LLF in
the neighbourhood of the sonic points. This produces numerical approximations in which the
non-physical pathologies mentioned in Reference [3] are considerably reduced.

All of these approaches use the characteristic structure of the flux Jacobian matrix, and
the algebraic simplicity of the polytropic ideal gas equation of state. However, the current
interest in high-temperature gas, for which air cannot be considered thermally and calorically
a perfect gas, has lead to various extensions of the FVS and FDS schemes to real gases, i.e.
a gas in which intermolecular forces are taken into account. Various extensions of either FVS
or FDS are considered in References [4-9] and we refer the interested reader to these papers
for specific details.

The aim of this work is to analyse Marquina’s FVS scheme for the Euler equations of
compressible flow in equilibrium real gases. The behaviour of single-phase Navier—Stokes
gases is determined by the so-called fundamental derivative, given by

r_ 1 ape)
p 6[) s=constant

(1)

where s is the entropy, p is the density, and c:(@r)/ap)|s1/2 is the sound speed (p stands
for pressure). We shall only consider real gases with I'>0, including some special van der
Waals gases. When I' >0 for all p and s, all shocks are compression shocks, i.e. the pressure
and density of the gas increases across the shock wave.

This work is organized as follows: in Section 2, we review the equations of flow for a
general convex equation of state and the corresponding Jacobian flux matrix and its eigensys-
tems, which form the ingredients needed in our code. Marquina’s approach is briefly reviewed
in Section 3. In Section 4 we give a constant entropy isobaric fix for both Stiffened and
van der Waals equations of state. In Section 5 we display numerical results on test prob-
lems for shock reflection and shock tube problems in 1-D, and the problem of Mach 3
flow in a tunnel with a step in 2-D cartesian co-ordinates, for real gases governed by the
above-mentioned equations of state. These tests validate Marquina’s flux split formula for
real gases and confirm that, as in the ideal gas case, this flux formula leads to a fairly robust
and accurate numerical scheme in which certain pathological behaviour known to occur in
numerical simulations with Godunov-type scheme is reduced to computationally acceptable
levels.

2. THE FLOW EQUATIONS

2.1. 1-D Euler equations

The one-dimensional compressible Euler equations written conservation form

oq of
5t =0 2)
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where q is the state vector of the conserved quantities and f is the flux function, are given
by

0 m
q=| m |, fl@=| pu*+p (3)
E u(E+ p)
2
E:pe—i—% (4)

where p is the density, m=pu is the momentum, E is the total energy per unit volume,
u is the velocity, e is the internal energy per unit mass and p is the pressure related to
these quantities via an equation of state (EOS), which is a relationship that describes the
equilibrium thermodynamic properties of the fluid material, and it is assumed to be written as

p=p(p,e)=p(t,e) &)

—1 is the specific volume. We will assume that

where T=p
p:<0 and p.>0 6)

These conditions guarantee the hyperbolicity of system (3), (see Reference [5] and references
therein).
For a polytropic ideal gas, Equation (5) is given by

2
ou
p=G-D(E-1). = )
The ratio of heats 7 takes the value 3 for a mono-atomic gas and the value 1.4 for air.
In this section, we give simple analytical expressions for the spectral decomposition of the
flux Jacobian matrix

0 1 0
2w P w2 2u — 1P Pe
Ad)= ) ) o b ()
2
W —Hy— Py —y2y g P MPe
p p p
where ¢? is the sound speed
P
H is the enthalpy
E 1
H="TP_P . p (10)
p p 2
and
) 0
n=g e, p=3 (o) (1n)
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The eigenvalues of the Jacobian matrix are
@=u—c, l(@)=u i(@=u+c (12)
The corresponding right eigenvectors are given by

1

1 1
= u—c |. (=] " | P@=| u+c (13)
H — uc H_pc H + uc
De

The left eigenvectors {1¥(q)}3_, are bi-orthonormal to {r*(q)};_,, i.e.
I'(q)-¥(q) =9y (14)

where 6;; is the Kronecker symbol. To compute 1°(q) we first form the matrix of right
eigenvectors

R(q) =(r'(q).r*(q),r’(q)) (15)
Using (14), we get the matrix of left eigenvectors
L(9)=R"'(q) (16)

The row vector 1¥(q), is defined to be the kth row in L(q). Then a complete set of left
eigenvectors is

1/u 1
ligy— ~ (¥ _ S
l(q)—2<c+l Y uX . X> (17)
P(q)=3(Y uX - X) (18)
1 u 1
3y (1Y% _ _ Z
l(q)_2(1 . Y uX+C X) (19)
where
_ P
X = e (20)
Y=(H - u*)X (21)
When the pressure is given by
p=(—1)pe (22)

one obtains expressions for the ideal gas case.
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2.2. 2-D Euler equations

The two-dimensional compressible Euler equations are

oq of Jg
o + P + 3 =0 (23)
where
P pu pv
2
pu pu”+ p puv
q= , fl@)= . glg)= ) (24)
pv puv pv-+ p
E (E+ p)u (E+ py
2 2
E = pe+ w (25)

where u and v are the velocities in the x- and y-directions, respectively, and p = p(p,e).
As in the 1-D Euler equations, we give analytical expressions for the spectral decomposition
of the Jacobian matrices A(q)=0f/0q and B(q)=0g/dq in terms of the thermodynamic
derivatives obtained from the (EOS).
The Jacobian matrix of the flux f(q) is

0 1 0 0
cz—Xz—%(H—qz) 2X—X;’e —Y;’e %
A(qQ)= 26
(q) o v X 0 (26)
2
X(CZ—H)—)&(H—QZ) H_M _Uvpe X—i—&
p p p p
The eigenvalues are
AQ)=X—c, (qQ)=4(q)=X, (qQ)=X+c (27)
A complete set of right eigenvectors is

1 0
rawo=| 0| rw=| (28)

q)= y > q)= 1

H — Xc Y

)1( 1
X+c
r’(q) = Y . ()= y (29)
2
- H + Xc
Pe
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The corresponding right and left eigenvectors are

b X  bX 1 bYb
o (2 X _bX 1 bhiYh
l(q)_(2+2c 2 2 2 2) (30)
P@)=(-Y 0 1 0) (31)
P(Q=(-b bX bY —b) (32)
by X  bX 1 bYb
i (2 X X 1 bhiYh
l(q)(z 2 2 T2 2 2) (33)
where
¢ =+ F=pt O (34)
H=ETP x_, v—y (35)
p
by = %, by=1+(q* — H)b, (36)

The Jacobian matrix of the flux function g(q) and its eigensystem are obtained from those
of f(q) by interchanging the second and third rows, and columns, and setting X =v and Y =u.
2.3. Equations of state

We consider here two equations of state which we will use in the numerical computations,
written in the general form

p=p(p,e) (37)

Stiffened gas EOS: The Stiffened gas EOS is a reasonable approximation for gases, liquids,
and solids under high-pressure conditions. Such equation is obtained by linearization near a
reference state from a Gruneisen equation of state for metal [10]

p—(y—l)pe—l-C(pp —1) (38)

ref

where p.r is a reference density, and C is a constant depending on the gas. The thermody-
namic derivatives used in our scheme are

C
pp:(v—l)eer and p.=(y—1)e (39)

ref
van der Waals EOS: This is an equation of state that takes into account the effects of

attractive forces between the molecules [11], and it has the form
RT a
IN=—+-—= 4
pip.T)=—~3 (40)

where T is the temperature, and the quantities a and b are the van der Waals gas con-
stants that measure the molecule cohesive forces and the finite size of molecules, respectively
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(a=0,0<b<1/y, see Reference [11] for numerical values to various gaseous substances).
Since e=e(p, T) and

-T

de:(ppsz> dp + ¢, dT (41)

Equation (40) may be written as

_ PR fetap\
ppe= 2 (L) ap (2)
with
R/ e+ap pa PR

pﬂ Cy ((1 _pb)Z + 1 _pb> ap an p Cv(l —pb) ( )

Here R is the specific gas constant, and ¢, the specific heat at constant volume.
Note that a van der Waals gas (42) reduces to a Noble-Abel gas when a=0. Polytropic
gases are obtained for =0 as well.

3. MARQUINA’S METHOD FOR REAL GASES

Marquina’s flux function, introduced by Donat and Marquina [2], is an extension of the
upwind entropy fix of Shu and Osher [12] to systems of hyperbolic conservation laws within
each cell. The Jacobian matrix A(q) at q is decomposed into its eigenvalues {7,(q)},_;,
normalized right eigenvectors {r”(q)}’)_, and normalized left eigenvectors {17(q)}}_;. These
ingredients allow the application of Marquina’s approach to the Euler equations for real gases
in the one-dimensional case. Next, we briefly review the method and comment on specific
issues related to the EOS for non-perfect gases.

Consider a cell wall, x;;1,, where we have to evaluate the numerical flux function F!, 1
at a given time step n. We decompose the left state Q;, the right state Q;,i, and the flux
function evaluated at these states into characteristic variables

of =17(Q).Qi,  of; =17(Qi+1).Qi
¢ip =17(Q)£(Qy), fu =17(Qi+1)£(Qi1)

for p=1,...,m. The characteristic numerical fluxes are
O = BT — 3(df + )P
k k - k k -
L =~ By 0p — %(‘f’iﬂ — ok ;1 )y
where

B = sign(4(Q;)) sign(4x(Qi+1))
0 = sign(A4(Q))
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and

o=  max Ak
qe)’i(Qi,QHl)I (q)‘

Here 7;(Q;,Q;.1) is a curve in phase-space connecting Q; and Q;. ;. For the Euler equations
of gas dynamics, the pth characteristic fields are genuinely non-linear or linearly degenerate
(also in our real gas case since I'>0). In that case

oy = max(|4x(Q)|, |4 (Qis1)])

Marquina’s flux function is then

F*(Q;, Qi) =F" +F~ (44)
where
Ff= 21 PP (Qy), F = 21 dLr’(Qiv1) (45)
p= p=
Marquina’s scheme is consistent, i.e.
F(q,9)=f(q) (46)
If all signal speeds A7(Q;) and A”(Q;.) are positive, then
FY(Q;,Qi:1)=1(Q)) (47)
and when all signal speeds are negative
F"(Q;, Qi 1) =1(Qi1) (48)

When an eigenvalue changes sign, Marquina’s flux function characteristic component is con-
structed from the local-Lax-Friedrichs scalar numerical flux, which introduces additional dis-
sipation to enforce an entropy condition in the case of a rarefaction wave (when A7(Q;) <0<
AP(Q;41)), or in other circumstances such as shock reflection (see References [2, 13]). The
flux splitting and the Jacobian evaluation in the first-order scheme are based on the physical
data on the left and right sides of the cell wall.

Marquina’s scheme is thus a characteristic-based upwind scheme that, in contrast to the
other upwind schemes, is free from either exact or approximate Riemann solvers in the case
of non-linear systems.

The first-order scheme based on Marquina’s flux function has conservation form

n n At n n
Qi+1 =Q/ - B( i+1/2 — Fifl/z)
with
FL1 ) =FM(Qi,Qiv)

Higher accuracy can be achieved by evaluating the Jacobian matrices A(qr) and A(qr)
at the left-side-biased interpolation of the conservative state Q; and the right-side-biased in-
terpolation of the conservative state Q;.1, respectively. Then, we use the eigenstructure of
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the Jacobian matrices A(qr) and A(qr) separately to compute the numerical characteristic
fluxes, by applying a non-linear high-order interpolation procedure on both the characteristic
variables and characteristic fluxes ¢? and ®? in space, leaving the problem continuous in
time, and using the total variation diminishing Shu—Osher Runge—Kutta methods for the time
evolution.

The states qp and qr on both sides of cell wall are interpolated using the same procedure as
for the numerical characteristic fluxes. In our numerical experiments, the reconstruction step
is performed on the conservative variables using the second-order ENO [12] and the third-
order PHM [14] procedures together with the second- and third-order Runge—Kutta methods,
respectively.

For multidimensional systems, we extend Marquina’s scheme by the standard dimension by
dimension technique, so that the 1-D algorithm applies in each spatial dimension.

Remark 1

For a polytropic ideal gas or a thermally (not necessarily calorically) perfect gas with EOS
p=pRT(e)

we have

plap,e)=ap(p,e)

Then, the physical flux is homogenous of degree 1, and Marquina’s scheme is a non-linear
hybridization of Steger and Warming FVS and LLF in each characteristic field. For an arbitrary
equilibrium gas, the physical flux no longer possesses the homogeneity property and we cannot
find a natural real-gas extension of Steger and Warming FVS, see Reference [9].

Remark 2

We note that for general EOS, the construction of some Riemann solvers is not unique and
it is somewhat difficult [6,9]. For example, for Roe FDS, a Roe matrix is not uniquely
determined and numerical codes using such matrix need mean values of the thermodynamical
derivatives p, and p.. Such quantities cannot be evaluated by their exact derivatives at mean
values p and e without violating the condition

Ap=pAe+ p,Ap

(see References [4,6,7,9] for details). In Marquina’s flux formula we use directly the point
values of such derivatives, which may be computed easily from the EOS without using addi-
tional assumptions or approximations.

4. CONSTANT ENTROPY ISOBARIC FIX FOR STIFFENED
AND VAN DER WAALS EOS

The constant entropy isobaric fix, recently derived by Fedkiw et al [15], is a new method to
fix the overheating errors which may occur when a shock reflects off a stationary solid wall
boundary or near a material interface. The isobaric fix is applied as a boundary condition near
the wall or interface by fixing pressure and velocity and enforcing constant entropy to get a
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new density or temperature so that the total variation from the physical values is minimum
(see Reference [15] for more details).

Fedkiw et al. [15] have written such entropy correction for ideal gases, tait solid, and virial
EOS, and have pointed out the difficulty to apply it to other EOS. In this section, we give a
constant entropy isobaric fix for both stiffened and van der Waals EOS.

Let us denote by ‘a’ the reference cell and by ‘b’ the cells to be corrected. The equation
that guarantees constant entropy [15] is

de p

= _L£ 4

P (49)
We solve the initial value problem defined by this equation together with p=p, to get the
corrected density p, for the Stiffened gas EOS and the van der Waals EOS cases.
4.1. Stiffened EOS

Using the equation of state, Equation (49) can be rewritten as an initial value problem with
a linear first-order ordinary differential equation

jzzféf)#ﬁ’j)e (50)
where
)=~ ype and g(p)=C (1~ (1)
We use the integrating factor u=p'~”, and we get the following solution:
e=_C__C +C(S)p"! (52)

0 (= Dprer
where C(S) is a constant depending on the entropy S. We use the EOS to get
p—C

C(S)= G-Dp (53)
or, equivalently
c(s)=2C (54)
Thus, the new density is
_ C 1/y
pnew_pa<§b_c> (55)
4.2. van der Waals EOS
Using the equation of state, Equation (49) becomes
R R
de a (56)

-— = e+ —a
dp c(l—pb)p  c(1—pb)

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:275-301



REAL GAS COMPUTATIONS 285

integrating this ODE, we get the solution

o R/c,
e:C(S)<1_pb> —ap (57)

We apply the EOS to obtain

—R/e,—1
c®)=5r+ar’) (1255) (58)

One can use the Newton—Raphson iteration

h(x,
Xl =Xy — h’((x,,)) (59)
X0 = Pa (60)
where
Rlc,+1
_% X —ax? _
h(x)—R<1_xb) ax= — pp (61)

to approximate the new density ppew.

5. NUMERICAL EXPERIMENTS

We will use the first-, second-, and third-order TVD Runge—Kutta methods for time stepping,
and the second-order ENO and the third-order PHM method for the spatial discretization. For
the Stiffened gas EOS we consider y=1.4, and C=1. For the van der Waals EOS we use
y=1.39, R=0.0821dm’ atmK~'mol ™", ¢ =0.03412 dm°® atmmol 2, »=0.23 dm’ mol~', and
¢,=20.81 JK~"mol "

5.1. Shock-tube problem

The first test to validate the accuracy and robustness of the present flux split method is the
shock tube problem. The initial data consists of two constants states separated by a diaphragm
at x=0.5. The left and the right states are given by

(pr,ur, pr) =(1,0,1) (62)
(prour, pr)=(0.125,0,0.1) (63)

The solution contains four states separated by a shock wave, a contact surface, and an
expansion wave. The numerical results, represented by circles, together with the exact so-
lution represented by solid lines, are shown in Figures 1-4. One can see that the three
waves are well resolved and that the present solver equipped with the ENO-2 and PHM-3
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Figure 1. Stiffened EOS. Shock tube problem with ENO-2 scheme: density top, pressure left, at £ =0.06
left, z=0.09 right. All the variables were computed on a equidistant grid of 100 zones.

reconstruction procedures converges to the entropy solution with good resolution. The numer-
ical approximations agree well with the exact solution for both Stiffened and van der Waals
EOS. Also, there are no noticeable pathologies or unwanted oscillations associated with any
of them.

In the first two figures, which correspond to Stiffened EOS, the jump across the contact
discontinuity is large if we compare it with the ideal gas case, but the numerical dissipation
remains the same (usually 4 or 5 points in the surface position). A weaker shock wave is
also observed. The scheme gives the correct shock position with a monotone profile and good
resolution.

For van der Waals EOS, Figures 3 and 4, it appears that the scheme behaves as in the
ideal gas case.

The results show that the third-order hyperbolic extension of the present scheme performs
well and gives the best resolution.

In Figure 5 we have plotted the density obtained by the same procedures with the extension
of van Leer flux vector splitting scheme [9] instead of the present solver. As we can see the
results are nearly the same for both Stiffened and van der Waals EOS.
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Figure 2. Stiffened EOS. Shock tube problem with PHM scheme: density top, pressure left, at =0.06
left, t=0.09 right. All the variables were computed on a equidistant grid of 100 zones.

5.2. Shock-reflection problem

In this example we consider the problem of a strong shock reflection from a rigid wall in
one dimension for real gases. The initial conditions consist of a gas of constant density and
pressure moving towards x =0 in the computational domain [0, 1], i.e.

(p(x),u(x),e(x))=(1,-1,4), O0<x<l (64)

The boundary at x =0 is a solid wall.

The ‘overheating effect’ occurs in the first few zones near the wall, when the shock reflects
off the stationary solid wall at the boundary. The overheating in the specific internal energy
profile (peak) and the corresponding dip in the density are conspicuous, while the pressure
and velocity have correct values.

Following Noh [1], this error is inevitable for any shock capturing method unsuccessful to
model the heat conduction present in real fluids. He showed that a numerical scheme with a
builtin heat conduction mechanism will be able to dissipate the overheating, i.e. the solution
converges in the L sense.
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Figure 3. van der Waals EOS. Shock tube problem with ENO-2 scheme: density top, pressure left, at
t=0.06 left, t=0.09 right. All the variables were computed on a equidistant grid of 100 zones.

Glaister [6, 7] has also observed the overheating error for other equations of state.

Figures 6 and 13 display numerical approximations obtained by the first-order scheme for
both Stiffened and van der Waals EOS. Although we observe an overheating in density (whose
value is around 1.5%) and the consequent dip in internal energy (of value less than 2%), this
behaviour is by no means as extreme as the one observed in other real-gas experiments, e.g.
Reference [6]. These plots show that the present flux-split method dissipates the overheating
error to a numerically acceptable level also in the real-gas case.

The overheating error for real gases persists in time, but its magnitude decreases with time.
The difference of the relative errors for Stiffened EOS. is less than 0.000341, and less than
0.000185 for van der Waals EOS, between t=1.5 and 2, with A#/Ax=0.1 and 100 equally
spaced points.

Our numerical experiments shown that the present scheme produces many intermediate
states in the numerical shock layer. This is due to the fact that in such a region, near the re-
flecting boundary, the wavespeeds change sign, thus, our flux-split method adds dissipation. To
reduce such dissipation, and to improve the overall resolution, we have experimented with a
second and a third-order extension of the present scheme by ENO2 and PHM3 reconstructions,
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Figure 4. van der Waals EOS. Shock tube problem with PHM scheme: density top, pressure left, at
t=0.06 left, t=0.09 right. All the variables were computed on a equidistant grid of 100 zones.

respectively. In Figures 7, 8,14 and 15, we display the density and internal energy (Figures
9—11). The results are consistent with those of the first-order scheme, in that we see an
ordering of schemes (see also the closer look at the wall in the right side of Figures 12 and
19) first order, ENO-2, and PHM, in order of decreasing magnitude of error. Notice that the
local hyperbolic reconstruction gives the best approximation near the wall and in the shock
transition layer (Figures 13—19). For the sake of comparison, the left sides of Figures 12
and 19 show the numerical value obtained with van Leer scheme near the wall. The overheat-
ing is much visible in the first- and the third-order schemes near the wall. The second-order
scheme gives similar results for Stiffened EOS as those obtained of our ENO2 method. No-
tice that the present solver combined with the local hyperbolic reconstruction gives the best
approximation near the wall and in the shock transition layer.

5.3. A two-dimensional test

In this section, we consider the standard two-dimensional Mach 3 step flow test problem. This
test has been used by Colella and Woodward [16] to compare the performance of various
numerical schemes in ideal gas simulations.
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Figure 5. Shock tube problem with van Leer scheme, density, left: second-order scheme, right:
third-order scheme right, top: Stiffened EOS top, and bottom: van der Waals EOS bottom.
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Figure 6. Stiffened EOS. Shock reflection problem with first-order scheme for time = 0.3: density left,
internal energy right. All the variables were computed on a equidistant grid of 100 zones.
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Figure 7. Stiffened EOS. Shock reflection problem with ENO-2 scheme for time #=0.3: density left,

internal energy right. All the variables were computed on a equidistant grid of 100 zones.
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Figure 8. Stiffened EOS. Shock reflection problem with PHM scheme for time 7=0.3: density left,

internal energy right. All the variables were computed on a equidistant grid of 100 zones.
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Figure 9. Stiffened EOS. Shock reflection problem with first-order scheme for time ¢ =0.3: density left,

internal energy right. All the variables were computed on a equidistant grid of 400 zones.
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Figure 10. Stiffened EOS. Shock reflection problem with ENO-2 scheme for time ¢ =0.3: density left,
internal energy right. All the variables were computed on a equidistant grid of 400 zones.
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Figure 11. Stiffened EOS. Shock reflection problem with PHM scheme for time #=0.3: density left,
internal energy right. All the variables were computed on a equidistant grid of 400 zones.
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Figure 12. Stiffened EOS, a zoom of 30 grid zone next to the left wall on a 100 zones. Right: present
scheme, left: van Leer scheme. o: first-order, +: ENO-2, and *: PHM.
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Figure 13. van der Waals EOS. Shock reflection problem with first-order scheme
for time #=0.4: density left, internal energy right. All the variables were
computed on a equidistant grid of 100 zones.
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Figure 14. van der Waals EOS. Shock reflection problem with ENO-2 scheme for time ¢ =0.4: density
left, internal energy right. All the variables were computed on a equidistant grid of 100 zones.
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Figure 15. van der Waals EOS. Shock reflection problem with PHM scheme for time ¢ =0.4: density
left, internal energy right. All the variables were computed on a equidistant grid of 100 zones.
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Figure 16. van der Waals EOS. Shock reflection problem with first-order scheme
for time #=0.4: density left, internal energy right. All the variables were
computed on a equidistant grid of 400 zones.
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Figure 17. van der Waals EOS. Shock reflection problem with ENO-2 scheme for time ¢ =0.4: density
left, internal energy right. All the variables were computed on a equidistant grid of 400 zones.
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Figure 18. van der Waals EOS. Shock reflection problem with PHM scheme for time ¢ =0.4: density
left, internal energy right. All the variables were computed on a equidistant grid of 400 zones.
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Figure 19. van der Waals EOS, a zoom of 30 grid zone next to the left wall on a 100 zones. Right:
present scheme, left: van Leer scheme, o: first-order, +: ENO-2, and *: PHM.
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Figure 20. Stiffened gas EOS, contour plots of numerical approximations to the density by the first
order scheme: no corner correction (top), with corner correction (bottom) at 7' =2.

The problem begins with a uniform Mach 3 flow in a wind tunnel containing a step. The
tunnel is 3 units long and 1 unit wide. The step is 0.2 units high and is located 0.6 units
from the left hand and of the tunnel. An inflow boundary condition is applied at the left end
of the computational domain and outflow boundary conditions are applied at the right end.
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Figure 21. Stiffened gas EOS, contour plots of numerical approximations to
the density by ENO-2-REF-M (top), PHM-REF-M (bottom) at 7'=2. The
corner treatment is applied.

We apply reflecting boundary conditions along the walls of the tunnel. The initial conditions
for the gas in the tunnel are p=14, p=1, u=3, and v=0.

The density profile is the hardest to compute due to the numerical errors generated at the
corner of the step, which is the centre of the rarefaction fan, i.e. a singular point of the flow,
along the upper wall at the contact discontinuity, and along the reflecting boundaries.

Colella and Woodward [16], and Fedkiw et al. [15], noticed that these errors generated in
the neighbourhood of the corner and along the reflecting boundaries can affect seriously the
global flow. A large entropy near the singular point causes a boundary layer in density of about
one to two zones to form, and the magnitude of the two components of the velocity decreases
along the top of the step. To fix it, it is necessary to apply additional boundary corrections
near the corner to minimize the numerical errors: a constant-entropy fix (see Section 4), to
enforce entropy constancy, and an enthalpy correction, to get the solution to converge to the
steady state.

The corner treatment is performed after updating the computed solution by a substep of the
TVD Runge—Kutta methods as follows.

Let us denote by ‘a’ the cell located just to the left and below the corner, called the
reference cell, and by ‘b’ fours cells of the first row above the step starting just to the right

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:275-301
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Figure 22. van der Waals EOS, contour plots of numerical approximations to the density by the
first-order scheme: no corner correction (top), with corner correction (bottom) at 7 =2.

of the corner, and the first two cells of the second row above, also starting from the right.
We use the conserved variables ¢, to correct the variables gp.

e Entropy correction: In each cell ‘b> we reset the new density computed in Section 4
from cell ‘a’ for both Stiffened and van der Waals EOS. Those corrections are consistent
since the EOS used have I'>0.

e Enthalpy correction: We use the new density value to correct the enthalpy in ‘b’ cells,
by changing the magnitudes of the velocities (not their directions!) as follows:
There is always a non-negative constant o such that

H,=H; (65)

where H, is the enthalpy in cell ‘a’, and

w_ Db 1
H,,:E+eb+5aq§ (66)

with g7 = y? + v?. Equation (65) is just Bernoulli’s law for steady flows [17], and
it always has a non-negative solution for o, because the value of p, is never larger
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Figure 23. van der Waals EOS, contour plots of numerical approximations to the density:
ENO-2-REF-M (top), PHM-REF-M (bottom) at 7 =3. The corner treatment is applied.

than p,
2 I_[a - -
. ( sz//’b ey) (67)
q;
The new conserved variables are
qh - (pnew> \/&pnew”ba \/&pnewvh; pneweh + pnewa(ug + 03/2))T (68)

Such corner correction is accompanied by an entropy correction along the upper wall of
the tunnel to reduce overheating errors.

We run the code, with equally spaced grids Ax:Ayzﬁ, and display the numerical
results when the unsteady flow has a rich and interesting structure. Each plot (Figures 20—
23) displays 30 equally spaced level curves between the minimum and maximum values of
the computed density.

Figures 24-26 show the effect of the numerical corner treatment and isobaric fix. The
overheating errors are reduced (the level curves near the wall are more orthogonal). Observe
that the Mach stem pathology at the contact discontinuity is minimized and the entropy at
the corner is preserved. Also, we see that the Mach stem and the position of the reflected

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:275-301
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Figure 24. Stiffened EOS, contour plots of numerical approximations to the enthalpy by the PHM
scheme: no corner correction (top), with corner correction (bottom) at 7 =3. Notice the entropy
violation near the corner and the build up of the boundary layer.
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Figure 25. van der Waals EOS, contour plots of numerical approximations to the enthalpy by the
PHM scheme: no corner correction (top), with corner correction (bottom) at 7 =3. Notice the entropy
violation near the corner and the build up of the boundary layer.
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Figure 26. Section x =0.605 of the enthalpy. Top: Stiffened EOS. Bottom: van der Waals EOS. Left:
no corner treatment. Right: with corner treatment.

shock are consistent in all runs. The order of accuracy of the method used is consistent with

resolution obtained.

6. CONCLUSION

An extension of the flux split method [2] to an arbitrary equilibrium gas law has been de-
scribed. The scheme is non-linear, uniquely defined, upwind, and introduces numerical dissi-
pation in a natural way. The evaluation of the flux function uses directly the point values of

the thermodynamical derivatives without any assumption or approximation.
An extension of Bernoulli’s law, to get the solution to converge to steady state, and an

entropy correction for both Stiffened gas and van der Waals EOS, to reduce the overheating

near material interfaces, has also been introduced.
From the numerical results, it is clear that the present scheme is as robust and efficient as

in the perfect gas case.
Int. J. Numer. Meth. Fluids 2003; 41:275-301
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